Solution. Given the concentration of acetic acid 1.0 M. Write the equation of dissociation of acetic acid: $H_3C-COO^- + H^+$. Let x mol / I acetic acid be dissociated, then its equilibrium concentration will be (1.0-x) mol / I, and the equilibrium concentration of hydrogen ions and acetate ion will be x mol / I. Then we write the equation for the dissociation constant of acetic acid, the numerical value of which is 1.8×10^{-5} : $Ka = \frac{[H^+] \times [H_3 C - COO^-]}{[H_3 C - COOH]} = 1.8 \times 10^{-5} = \frac{x^2}{1-x}$. We solve this equation for x, given that x can only take positive values. $x=4.234 \times 10^{-3}$ mol/I and $x=[H^+]$ and we know that pH=-lg[H⁺], then pH=-lg(4.234 \times 10^{-3})=2.37.

Answer: a buffer solution is a solution that is able to maintain a certain pH value with small deviations from this value to a smaller or larger side when acid or base is added to it, respectively; pH=2.37.

Answer provided by www.AssignmentExpert.com