What are buffer solutions? Calculate the pH of 1.0 M of acetic acid having $\mathrm{Ka}=1.8 \times 10^{\wedge}(-5)$

Solution. Given the concentration of acetic acid 1.0 M . Write the equation of dissociation of acetic acid: $\mathrm{H}_{3} \mathrm{C}-\mathrm{COOH}=\mathrm{H}_{3} \mathrm{C}-\mathrm{COO}^{-}+\mathrm{H}^{+}$. Let $\times \mathrm{mol} / \mathrm{I}$ acetic acid be dissociated, then its equilibrium concentration will be (1.0-x) mol / I, and the equilibrium concentration of hydrogen ions and acetate ion will be $\mathrm{x} \mathrm{mol} / \mathrm{I}$. Then we write the equation for the dissociation constant of acetic acid, the numerical value of which is $1.8 \times 10^{-5}: \mathrm{Ka}=\frac{\left[H^{+}\right] \times\left[H_{3} \mathrm{C}-\mathrm{COO}^{-}\right]}{\left[H_{3} \mathrm{C}-\mathrm{COOH}\right]}=1.8 \times 10^{-5}=\frac{x^{2}}{1-x}$. We solve this equation for x, given that x can only take positive values. $x=4.234 \times 10^{-3} \mathrm{~mol} / \mathrm{I}$ and $\mathrm{x}=\left[\mathrm{H}^{+}\right]$and we know that $\mathrm{pH}=-\lg \left[\mathrm{H}^{+}\right]$, then $\mathrm{pH}=-\lg \left(4.234 \times 10^{-3}\right)=2.37$.
Answer: a buffer solution is a solution that is able to maintain a certain pH value with small deviations from this value to a smaller or larger side when acid or base is added to it, respectively; $\mathrm{pH}=2.37$.

