For the reaction, $\mathrm{CO}(\mathrm{g})+2 \mathrm{H} 2(\mathrm{~g})=\mathrm{CH} 3 \mathrm{OH}(\mathrm{g})$ derive an expression for the equilibrium constant, Kp in terms of the extent of reaction, $€$ and the total pressure pt, if initially 2 mol of CO and 3 mol of H 2 are mixed.

Solution. The general expression for the equilibrium constant is written as: $\mathrm{K}_{\mathrm{p}}=\frac{p_{\mathrm{CH}_{3} \mathrm{OH}}}{p_{\mathrm{H}_{2}}^{2} \times p_{\mathrm{CO}}}$.
We have a degree of reaction $€$. Then reacted: $2 €$ moles $\mathrm{CO}, 4 €$ moles H_{2}, and formed: $2 €$ moles $\mathrm{CH}_{3} \mathrm{OH}$. Then the equilibrium quantities of substances:

- for CO: (2-2€) moles;
- for H_{2} : (3-4€) moles;
- for $\mathrm{CH}_{3} \mathrm{OH}$: $2 €$ moles.

We have a total pressure pt, then partial pressures:
-for CO: $\mathrm{p}_{\mathrm{CO}}=\frac{2-2 €}{2-2 €+3-4 €+2 €} p t=\frac{2-2 €}{5-4 €} p t$;
-for $\mathrm{H}_{2}: \mathrm{p}_{\mathrm{H} 2}=\frac{3-4 €}{5-4 €} p t$;
-for $\mathrm{CH}_{3} \mathrm{OH}$: $\mathrm{p}_{\mathrm{CH} 3 \mathrm{OH}}=\frac{2 €}{5-4 €} p t$.
Then the expression of the equilibrium constant takes the form:
$K_{p}=\frac{€(5-4 €)^{2}}{(1-€)(3-4 €)^{2} \mathrm{pt}^{2}}$.
Answer: $K_{P}=\frac{€(5-4 €)^{2}}{(1-€)(3-4 €)^{2} \mathrm{pt}^{2}}$.

