Calculate the entropy of mixing when 2.00 mol of H 2 are mixed with 3.00 mol of N 2 assuming that no chemical reaction occurs between them.

Solution. According to the second law of thermodynamics, gas will always go to such a state as to occupy free volume, that is, it always goes from the state of least probable entropy to the state of greater probability. Express this with the formula: $S=k_{B} \ln W$.
Imagine a situation where two spaces with gases occupying corresponding volumes, $\mathrm{V}_{\mathrm{H} 2}$ (right) and $\mathrm{V}_{\mathrm{N} 2}$ (left). Open the partition. We get a mixture of gases occupying the volume $\mathrm{V}=\left(\mathrm{V}_{\mathrm{H} 2}+\mathrm{V}_{\mathrm{N} 2}\right)$. In the figure it looks like this:

For hydrogen, we can write the change in entropy as follows: $\Delta S_{H_{2}}=n_{H_{2}} \mathrm{R} \ln \left(\frac{V_{H_{2}}+V_{N_{2}}}{V_{H_{2}}}\right)$.
For nitrogen, we can write the change in entropy as follows: $\Delta S_{N_{2}}=n_{N_{2}} R \ln \left(\frac{V_{H_{2}}+V_{N_{2}}}{V_{N_{2}}}\right)$.
The entropy of the mixture will then be expressed by the formula: $\Delta_{\text {mix }} \mathrm{S}=\Delta S_{H_{2}}+\Delta S_{N_{2}}=n_{H_{2}} \mathrm{R} \ln \left(\frac{V_{H_{2}}+V_{N_{2}}}{V_{H_{2}}}\right)+n_{N_{2}} \mathrm{R} \ln \left(\frac{V_{H_{2}}+V_{N_{2}}}{V_{N_{2}}}\right)$.
At the same time, the law of Mendeleev-Clapeyron is known: $\mathrm{pV}=\mathrm{nRT}$, Then the entropy of the mixture we can write: $\Delta_{\text {mix }} \mathrm{S}=\Delta S_{\mathrm{H}_{2}}+\Delta S_{N_{2}}=n_{H_{2}} \mathrm{R} \ln \left(\frac{n_{H_{2}}+n_{N_{2}}}{n_{H_{2}}}\right)+n_{N_{2}} \mathrm{R} \ln \left(\frac{n_{H_{2}}+n_{N_{2}}}{n_{N_{2}}}\right)$.
Then we calculate the entropy change of the mixture, substituting the relevant data:
$\Delta_{\text {mix }} S=\Delta S_{H_{2}}+\Delta S_{N_{2}}=n_{H_{2}} \operatorname{RIn}\left(\frac{n_{H_{2}}+n_{N_{2}}}{n_{H_{2}}}\right)+n_{N_{2}} \mathrm{R} \ln \left(\frac{n_{H_{2}}+n_{N_{2}}}{n_{N_{2}}}\right)=2 \times 8.31 \times \ln \left(\frac{2+3}{2}\right)+3 \times 8.31 \times \ln \left(\frac{2+3}{3}\right)=$ $=15.229+12.735=27.964 \frac{\mathrm{~J}}{\mathrm{~K}}$.
Answer: $\Delta_{\text {mix }} S=27.964 \frac{\mathrm{~J}}{\mathrm{~K}}$.

