A 1.22 gram of unknown liquid is vaporized at 100 degrees Celsius and 102 kPa . the sample occupies 617 ml . If the percentage composition of this compound is 59.96% carbon, 13.42% hydrogen and 26.62% oxegyn, derive the molecular formula.

Solution. We derive the simplest formula of the compound, based on the percentage of the elements. Suppose there is 100 g of substance, then we find the molar ratio of the elements: $\mathrm{v}(\mathrm{C}): \mathrm{v}(\mathrm{H}): \mathrm{v}(\mathrm{O})=\frac{59.96}{\mathrm{M}(\mathrm{C})}: \frac{13.42}{\mathrm{M}(\mathrm{H})}: \frac{26.62}{\mathrm{M}(0)}=\frac{59.96}{12}: \frac{13.42}{1}: \frac{26.62}{16}=5: 13.42: 1.66=3: 8: 1$.
So, the simplest formula for the desired compound is $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.
Further, we have the following data: m (compound) $=1.22$ grams, $\mathrm{t}=100$ degrees Celsius, or $100+273=373$ degrees Kelvin, $\mathrm{p}=102 \mathrm{kPa}, \mathrm{V}=617 \mathrm{ml}$, or 0.617 L , then, according to the Mendeleev-Clapeyron equation, we can calculate the molar mass of the compound: $\mathrm{pV}=\frac{m(\text { compound })}{M} R T, \mathrm{M}=\frac{m(\text { compound }) R T}{p V}=\frac{1.22 \times 8.31 \times 373}{102 \times 0.617}=60 \frac{\mathrm{~g}}{\mathrm{~mol}}$. The molar mass of a simple substance, the formula of which we found above, is: $\mathrm{M}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)=3 \times \mathrm{M}(\mathrm{C})+8 \times \mathrm{M}(\mathrm{H})+\mathrm{M}(\mathrm{O})=36+8+16=60 \frac{\mathrm{~g}}{\mathrm{~mol}}$. The molar masses are the same, then the formula of the compound: $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.
Answer: $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.

