0.0755 g of selenium vapours occoupying a volume of 114.2 mL at 700 and 185 mm of Hg. The vapours are in equilibrium as Se6(g)⇒3Se2(g). Calculate (i) Degree of dissociation of (Se=79). (ii) Kp. (iii) Kc.

Solution. i)First, let's define the degree of dissociation. The degree of dissociation is the ratio of the number of disintegrated particles to the total number of particles. We write in mathematical form, taking the designation of the degree of dissociation as $\alpha : \alpha = \frac{N diss}{N t \alpha t}$ Now we apply the Mendeleev-Clapeyron law: PV=nRT, where P – pressure, kPa; T – temperature, K; V – volume, L; R - gas constant, J/(K * mol); n – moles. Find the molar mass of the gas from the Mendeleev-Clapeyron equation: $M = \frac{mRT}{PV}$ $\frac{0.075 \times 8.31 \times 973}{24.65 \times 0.1142} = 215.42 \frac{g}{mol}$. This molar mass consists of molar masses Se₆ and Se₂ according to their mole fractions in the mixture. Then we denote the share Se₆ for value ω , then for Se₂ value will be $(1-\omega)$. Then: M= $\omega \times M(Se_6)+(1-\omega)\times M(Se_2)=582\omega+194-194\omega=215.42$, and $\omega=0.055$. So, we have a mole fraction for Se₆ 0.055 and for Se₂ 1-0.055=0.945, but at the same time we know, that the mole fraction is the ratio of moles of the component in the mixture to the total number of moles of the component in the mixture. The number of moles is related to the number of molecules through the Avogadro number. We have an equilibrium mixture, and therefore the number of particles in an equilibrium mixture for Se₆ written like this: N(Se₆)=N⁰(Se₆)×(1- α). Further reasoning is as follows. Reacted N α of particles Se₆, and formed 3Nα of particles Se₂. Then we can write the equation: $\frac{(1-\alpha)N(Se_6)}{(1-\alpha)N(Se_6)+3N(Se_6)\alpha} = 0.055$. Having solved this equation, we obtain the degree of dissociation equal to α =0.851.

ii) Partial pressure of Se₂, based on previous arguments, will be equal 0.945×24650 Pa=23294.25 Pa. Partial pressure of Se₆ will be equal 24650-23294.25=1355.75 Pa. Then $v_{se_2}^{p_{se_2}^3} = 22 v_{se_2}^{p_{se_2}} = 22 v_{se_2}^{p_{se_2}$

 $K_p = \frac{p_{se_2}^3}{p_{se_6}} = 9.32 \times 10^9 \text{ Pa}^2.$

iii) $K_c = K_p \times (RT)^{-\Delta n}$. $\Delta n = 3 - 1 = 2$. $K_c = 9.32 \times 10^9 \times (8.31 \times 973)^{-2} = 142.6 \text{ mol}^2/\text{m}^4$. **Abswer:** i) $\alpha = 0.851$; ii) $K_p = 9.32 \times 10^9 \text{ Pa}^2$; iii) $K_c = 142.6 \text{ mol}^2/\text{m}^4$.

Answer provided by www.AssignmentExpert.com