0.0755 g of selenium vapours occoupying a volume of 114.2 mL at 700 and 185 mm of Hg . The vapours are in equilibrium as $\mathrm{Se} 6(\mathrm{~g}) \rightleftharpoons 3 \mathrm{Se} 2(\mathrm{~g})$. Calculate (i) Degree of dissociation of ($\mathrm{Se}=79$). (ii) Kp. (iii) Kc.

Solution. i)First, let's define the degree of dissociation. The degree of dissociation is the ratio of the number of disintegrated particles to the total number of particles. We write in mathematical form, taking the designation of the degree of dissociation as α : $\alpha=\frac{\text { Ndiss }}{\text { Ntot }}$.
Now we apply the Mendeleev-Clapeyron law: PV=nRT, where P - pressure, kPa; T temperature, $\mathrm{K} ; \mathrm{V}$ - volume, L; R-gas constant, J/(K * mol); n - moles.
Find the molar mass of the gas from the Mendeleev-Clapeyron equation: $\mathrm{M}=\frac{m R T}{P V}=$ $\frac{0.075 \times 8.31 \times 973}{24.65 \times 0.1142}=215.42 \frac{\mathrm{~g}}{\mathrm{~mol}}$. This molar mass consists of molar masses Se_{6} and Se_{2} according to their mole fractions in the mixture. Then we denote the share Se_{6} for value ω, then for Se_{2} value will be $(1-\omega)$. Then: $M=\omega \times M\left(\mathrm{Se}_{6}\right)+(1-\omega) \times M\left(\mathrm{Se}_{2}\right)=582 \omega+194-194 \omega=215.42$, and $\omega=0.055$. So, we have a mole fraction for $\mathrm{Se}_{6} 0.055$ and for $\mathrm{Se}_{2} 1-0.055=0.945$, but at the same time we know, that the mole fraction is the ratio of moles of the component in the mixture to the total number of moles of the component in the mixture. The number of moles is related to the number of molecules through the Avogadro number. We have an equilibrium mixture, and therefore the number of particles in an equilibrium mixture for Se_{6} written like this: $\mathrm{N}\left(\mathrm{Se}_{6}\right)=\mathrm{N}^{0}\left(\mathrm{Se}_{6}\right) \times(1-\alpha)$. Further reasoning is as follows. Reacted $\mathrm{N} \alpha$ of particles Se_{6}, and formed $3 \mathrm{~N} \alpha$ of particles Se_{2}. Then we can write the equation: $\frac{(1-\alpha) N\left(S e_{6}\right)}{(1-\alpha) N\left(S e_{6}\right)+3 N\left(S e_{6}\right) \alpha}=0.055$. Having solved this equation, we obtain the degree of dissociation equal to $\alpha=0.851$.
ii) Partial pressure of Se_{2}, based on previous arguments, will be equal 0.945×24650 $\mathrm{Pa}=23294.25 \mathrm{~Pa}$. Partial pressure of Se_{6} will be equal $24650-23294.25=1355.75 \mathrm{~Pa}$. Then $\mathrm{K}_{\mathrm{p}}=\frac{p_{s_{S e_{2}}}^{3}}{p_{S e_{6}}}=9.32 \times 10^{9} \mathrm{~Pa}^{2}$.
iii) $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}} \times(\mathrm{RT})^{-\Delta n} . \Delta \mathrm{n}=3-1=2 . \mathrm{K}_{\mathrm{c}}=9.32 \times 10^{9} \times(8.31 \times 973)^{-2}=142.6 \mathrm{~mol}^{2} / \mathrm{m}^{4}$.

Abswer: i) $\alpha=0.851$; ii) $K_{p}=9.32 \times 10^{9} \mathrm{~Pa}^{2}$; iii) $\mathrm{K}_{\mathrm{c}}=142.6 \mathrm{~mol}^{2} / \mathrm{m}^{4}$.

