How many litres of hydrogen gas will be produced by the decomposition of 90L of water? Assume that temperature and pressure are constant
$2 \mathrm{H} 2 \mathrm{O} 2 \mathrm{H} 2+\mathrm{O} 2$

Solution. We have, that $\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)=90 \mathrm{~L}$, and $\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right)=90 \mathrm{~g}$, tnen $\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=m\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=90 / 18=5$ moles. According to the reaction equation: $n\left(\mathrm{H}_{2}\right)=n\left(\mathrm{H}_{2} \mathrm{O}\right)=5$ moles, $n\left(\mathrm{O}_{2}\right)=0.5 n\left(\mathrm{H}_{2} \mathrm{O}\right)=2.5$ moles. The temperature and pressure are constant, then $\mathrm{V}\left(\mathrm{H}_{2}\right)=\mathrm{Vm} \times \mathrm{n}\left(\mathrm{H}_{2}\right)=5 \times 22.4=112$ litres.
Answer: 112 litres hydrogen gas.

Answer provided by www.AssignmentExpert.com

