Hydrogen gas can be produced in the laboratory through the reaction of hydrochloric acid with magnesium metal
$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{H} 2(\mathrm{~g})+\mathrm{MgCl} 2(\mathrm{aq})$. When 12.5 g of Mg reacts, what volume, in liters, of H 2 gas is produced at $22 \circ \mathrm{C}$ and 809 mmHg ?
Express your answer with the appropriate units.
$P=107,857 \mathrm{kPa}$
$\mathrm{T}=22+273=295 \mathrm{~K}$
$\mathrm{n}(\mathrm{H} 2)=\mathrm{n}(\mathrm{Mg})=12.5 \mathrm{~g} / 24 \mathrm{~g} / \mathrm{mol}=0.52 \mathrm{~mol}$
$P V=n R T$
$\mathrm{V}=\mathrm{nRT} / \mathrm{P}=0.52 \mathrm{~mol} * 8.31 \mathrm{~J} / \mathrm{mol}^{*} \mathrm{~K} * 295 \mathrm{~K} / 107857 \mathrm{~Pa}=0.0118 \mathrm{~m} 3=11.8 \mathrm{~L}$

Answer provided by www.AssignmentExpert.com

