Question \#83512

A 8.80-L container holds a mixture of two gases at $53^{\circ} \mathrm{C}$. The partial pressures of gas A and gas B, respectively, are 0.430 atm and 0.580 atm. If 0.200 mol of a third gas is added with no change in volume or temperature, what will the total pressure become?

Solution.

Firstly, we should write Dalton's Law of Partial Pressure.

$$
\mathrm{P}=\mathrm{Pa}+\mathrm{Pb}+\mathrm{Pc}
$$

Secondly, we do not know Pc. We can find it according this formula.

$$
\begin{aligned}
& \mathrm{Pc}=\mathrm{n} * \mathrm{R} * \mathrm{~T} / \mathrm{V} \\
& \mathrm{Pc}=0.200 \mathrm{~mol} * 0.0831 \mathrm{~L} * \mathrm{~atm} / \mathrm{K} * \mathrm{~mol} * 326 \mathrm{~K} / 8.80 \mathrm{~L}=0.616 \mathrm{~atm} .
\end{aligned}
$$

And at last, we can find the total pressure

$$
\mathrm{P}=0.430 \mathrm{~atm} .+0.580 \mathrm{~atm} .+0.616 \mathrm{~atm} .=1.626 \mathrm{~atm} .
$$

Answer:

$$
P=1.626 \mathrm{~atm} .
$$

