We have a container that contains 33.7 g of $\mathrm{CO} 2(\mathrm{~g})$. The partial pressure of CO 2 is 2.57 atm and the volume of the container is 28.5 L . What is the average square speed (in m / s) of the CO2 molecules in this container?

Solution:

The average square speed $\left(\left\langle V^{2}\right\rangle\right)$ is equal to $\frac{3 R T}{M}$, where R is the ideal gas constant, $8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}), \mathrm{T}$ is the temperature of gas and M is molar mass of gas [1]. According ideal gas law, $p V=n R T$, the temperature of gas is equal to $\frac{p V}{n R^{\prime}}$, o $\frac{p V M}{m R^{\prime}}$, where p is partial pressure ($2.57 \mathrm{~atm}=2.57 \mathrm{~atm} * 101325 \mathrm{~Pa} / \mathrm{atm}=260405.25 \mathrm{~Pa}$), V is volume of container ($28.5 \mathrm{~L}=28.5^{*} 10^{-3} \mathrm{~m}^{3}$), m is mass $(33.7 \mathrm{~g}=0.0337 \mathrm{~kg}), \mathrm{n}$ is a number of moles of gas [1]. Then, $\left\langle v^{2}\right\rangle=\frac{3 p V}{m}=\frac{3 \times 260405.25 \times 28.5 \times 10^{-3}}{0.0337}=$ $660672,07 \mathrm{~m}^{2} / \mathrm{s}^{2}$, or $813 \mathrm{~m} / \mathrm{s}$.

Answer: $813 \mathrm{~m} / \mathrm{s}$.

References:

1. Thermodynamics, From Concepts to Applications (2nd Edition), A. Shavit, C. Gutfinger, CRC Press (Taylor and Francis Group, USA), 2009, ISBN 978-1-4200-7368-3
