What is the pressure in mmHg of a gas mixture that contains 1 g of H_{2} and 8 g of Ar in 3.0L container at 27 degree Celsius?

Solution:

According to ideal gas law:
$P V=n R T$
(where P - total pressure, V - volume of container, n - total number of moles in container, R universal gas constant, T - temperature in Kelvins).

Number of moles of Hydrogen:

$$
\mathrm{n}\left(\mathrm{H}_{2}\right)=\frac{m\left(\mathrm{H}_{2}\right)}{M\left(\mathrm{H}_{2}\right)}=\frac{1 \mathrm{~g}}{2 \mathrm{~g} / \mathrm{mol}}=0.5 \mathrm{~mol}
$$

Number of moles of Argon:

$$
\mathrm{n}(\mathrm{Ar})=\frac{m(\mathrm{Ar})}{M(\mathrm{Ar})}=\frac{8 \mathrm{~g}}{40 \mathrm{~g} / \mathrm{mol}}=0.2 \mathrm{~mol}
$$

Let us find pressure in the container:

$$
\mathrm{P}=\frac{n R T}{V}=\frac{(0.5+0.2) \mathrm{mol} * 8.314 \frac{L * k P a}{m o l} * K^{*} 300 \mathrm{~K}}{3 L}=581.98 \mathrm{kPa}
$$

At last, we will transform kPa into mmHg :
760 mmHg corresponds to 101.325 kPa ;
x mmHg corresponds to 581.98 kPa ;
$\mathrm{x}=\frac{581.98 \mathrm{kPa} * 760 \mathrm{mmHg}}{101.325 \mathrm{kPa}}=4365.2 \mathrm{mmHg}$;
Answer:
Pressure in the container is equal to 4365.2 mmHg .

