Aluminum metal crystallizes in a face-centered cubic unit cell. The volume of the cell is $0.0622 \mathrm{~nm}^{\wedge} 3$. what is the volume of a single aluminum atom?

Solution:

$$
V_{a i l}=0,0622 \mathrm{um}^{3}
$$

a face-centered cubic unit cell.

$$
\begin{aligned}
& \text { Packing densify }=\frac{\text { Vatoms }}{\text { Yell }} \\
& \text { Well }=a^{3}, A C=a, \\
& A B=4 r, r \text {-radius of } A l \text {-atour } \\
& A B=a \sqrt{2},
\end{aligned}
$$

then $4 r=a \sqrt{2} \Rightarrow r=\frac{a \sqrt{2}}{4}$.

$$
\begin{aligned}
& \text { Vatoms }=8 \cdot \frac{1}{8}+6 \cdot \frac{1}{2}=4 \text { - number of atoms } \\
& \begin{aligned}
\text { Pd }=\left(\frac{4}{3} \pi\left(\frac{Q \sqrt{2}}{4}\right)^{3} \cdot \text { Nat } / / a^{3}=0,74\right.
\end{aligned} \\
& \begin{aligned}
\text { Vatoms }=\text { eel } \times P_{0} d & =0,0622 \mathrm{~km}^{3} \cdot 0,74- \\
& =0,046028 \mathrm{~mm}^{3}
\end{aligned} \\
& \begin{aligned}
& \text { Vatom }=\frac{\text { Vafoms }}{\text { Natoms }}=\frac{0,046028 \mathrm{~m}^{3}}{4}=0,011507 \mathrm{~mm}^{3} \\
& \sim 0,0115 \mathrm{Hm}^{3}
\end{aligned}
\end{aligned}
$$

Answer:- $V_{a t o m}=0,0115 \mathrm{~km}^{3}$

