Answer on Question \#83277, Chemistry / General Chemistry

The reaction $A(a q)->B(a q)+C(a q)$ is a first-order reaction. The half-life of $A(a q)$ is 92.3 s at $25.0^{\circ} \mathrm{C}$ and its half-life is 70.9 s at $45.0^{\circ} \mathrm{C}$. What is its half-life (in s) at $65.0^{\circ} \mathrm{C}$?

Solution

For first-order reaction:
$\mathrm{T}_{1 / 2}=\frac{\ln 2}{\mathrm{k}_{1}}$; where $\mathrm{T}_{1 / 2}-$ the half-life, k_{1} - reaction rate constant upon certain temperature.
Find k_{1} and k_{2} for the reaction at $25.0^{\circ} \mathrm{C}(298 \mathrm{~K})$ and $45.0^{\circ} \mathrm{C}(318 \mathrm{~K})$
$\mathrm{k}=\frac{\ln 2}{\mathrm{~T}_{1 / 2}}=\frac{0.693}{\mathrm{~T}_{1 / 2}}$;
$\mathrm{k}_{1}=\frac{0.693}{92.3}=7.51 \times 10^{-3}\left(\mathrm{~s}^{-1}\right)-$ reaction rate constant upon 298 K ;
$\mathrm{k}_{2}=\frac{0.693}{70.9}=9.77 \times 10^{-3}\left(\mathrm{~s}^{-1}\right)-$ reaction rate constant upon 318 K .
According to Arrhenius equation:
$\mathrm{k}=A \times e^{-\frac{E a}{R T}} ;$ where
k - reaction rate constant upon certain temperature;
A - Arrhenius constant or frequency factor;
E_{a} - activation energy;
R,T-gas constant and temperature.
After logarithmization the equation looks:
$\ln k=\ln A-\frac{E_{a}}{R T} ;$
Mark $\operatorname{In} A$ as X and E_{a} as Y, then
Ink $=\mathrm{X}-\mathrm{Y} / \mathrm{RT}$
$X=\ln k+Y / R T$
As X and Y are constants specific for the reaction and temperature independent, find them using the system of equations:
$X=\ln \left(7.5 \times 10^{-3}\right)+\frac{Y}{8.314 \times 298}=-4.89+\frac{Y}{2477.5}$
$X=\ln \left(9.8 \times 10^{-3}\right)+\frac{Y}{8.314 \times 318}=-4.63+\frac{Y}{2643.9}$
$-4.89+\frac{\mathrm{Y}}{2477.5}=-4.63+\frac{\mathrm{Y}}{2643.9}$
$\frac{Y}{2477.5}-\frac{Y}{2643.9}=-4.63+4.89=0.26$
$2643.9 Y-2477.5 Y=0.26 \times 2643.9 \times 2477.5$
$166.4 Y=1703068$
$Y=10234.8$
$X=-4.89+\frac{10234.8}{2477.5}=-0.76$
Find k for the reaction upon $65.0^{\circ} \mathrm{C}(338 \mathrm{~K})$
Ink $=-0.76-\frac{10234.8}{8.314 \times 338}$
Ink $=-0.76-3.64$
$\operatorname{lnk}=-4.4$
$k=e^{-4.4}=1.22 \times 10^{-2}$
Find the half-life of $A(a q)$ at $65.0^{\circ} \mathrm{C}$:
$\mathrm{T}_{1 / 2}=\frac{\ln 2}{\mathrm{k}}=\frac{0.693}{0.0122}=56.8(\mathrm{~s})$

Answer

The half-life of $A(\mathrm{aq})$ is $\mathbf{5 6 . 8} \mathbf{s}$ at $65.0^{\circ} \mathrm{C}$

Answer provided by www.AssignmentExpert.com

