Answer on Question \#83255 - Chemistry - General Chemistry

Question

Carbon dioxide in the atmosphere has been a topic in the news lately as one of the major causes of global warming and climate change (a topic we will explore later). One of the major components of gasoline is octane and it undergoes the following reaction in your car:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

If the typical tank (about 15 gal) can hold 42.6 kg of gasoline, how many kg of CO_{2} will be released into the air from using your car?

Solution

42.6 kg is 42600 g . From equation of the reaction it follows, that from two moles of $\mathrm{C}_{8} \mathrm{H}_{18}$ sixteen moles of CO_{2} are produced. Molar mass of $\mathrm{C}_{8} \mathrm{H}_{18}$ equals $12 \times 8+1 \times 18=114\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right)$. Molar mass of CO_{2} equals $12+16 \times 2=44\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right)$. Two moles of $\mathrm{C}_{8} \mathrm{H}_{18}$ weigh $114 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 2 \mathrm{~mol}=228 \mathrm{~g}$, sixteen moles of CO_{2} weigh $44 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 16 \mathrm{~mol}=704 \mathrm{~g}$. Therefore, there is a proportion:

228 g of gasoline produce 704 g of carbon dioxide;
42600 g of gasoline produce Xg of carbon dioxide.

$$
\begin{gathered}
\frac{228}{42600}=\frac{704}{X} \\
X=\frac{42600 \times 704}{228} \approx 131537
\end{gathered}
$$

Thus, 42600 g of gasoline produce 131537 g , or 131.537 kg of carbon dioxide.

Answer: it will be released 131.537 kg of carbon dioxide.

