Answer on Question \#82833, Chemistry / General Chemistry

0.571 mol of a weak acid, HA , and 11.6 g of NaOH are placed in enough water to produce 1.00 L of solution. The final pH of this solution is 4.14. Calculate the ionization constant, Ка, of HA.

Solution

First of all find the amount of NaOH placed in the solution:
$v(\mathrm{NaOH})=\frac{m}{M}=\frac{11.6}{40}=0.29(\mathrm{~mol})$
NaOH reacts with weak acid HA which is in excess:
$\mathrm{NaOH}+\mathrm{HA} \rightarrow \mathrm{NaA}+\mathrm{H}_{2} \mathrm{O}$
Base and acid react in ratio 1:1, hence the amount of NaA obtained is 0.29 mol .
Find the amount of HA left after the reaction:
$v(\mathrm{HA})=0.571-0.29=0.281(\mathrm{~mol})$
After the reaction the solution turns into a buffer with 0.29 mol of NaA and 0.281 mol of HA.
Use the formula for ionization constants of acids in buffers:
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{A}^{-}\right]}{[H A]}=\frac{\left[\mathrm{H}^{+}\right] \times[\mathrm{NaA}]}{[H A]}$; where $\left[\mathrm{H}^{+}\right],[\mathrm{HA}],[\mathrm{NaA}]$ - concentrations;
Find $\left[\mathrm{H}^{+}\right]$:
$\mathrm{pH}=-\lg \left[\mathrm{H}^{+}\right]$, thus $\left[\mathrm{H}^{+}\right]=10^{-4.14}=7.24 \times 10^{-5}$;
$\mathrm{K}_{\mathrm{a}}=\frac{7.24 \times 10^{-5} \times 0.29}{0.281}=\mathbf{7 . 4 8} \times 1 \mathbf{1 0}^{-5}$

Answer

7.48×10^{-5} is the ionization constant of HA.

Answer provided by www.AssignmentExpert.com

