Answer on Question \# 82831, Chemistry/General Chemistry

HA is a weak acid. Its ionization constant, Ka , is $4.3 \times 10-13$. Calculate the pH of an aqueous solution where the initial concentration of NaA is 0.047 M

Solution

$\mathrm{HA} \leftrightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$

$$
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}
$$

As initial concentration of NaA , conjugate base, is given, then:
$\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HA}^{-}+\mathrm{OH}^{-}$

$$
K_{b}=\frac{[H A]\left[O H^{-}\right]}{\left[A^{-}\right]}
$$

As we know Ka we can find Kb

$$
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1 \times 10^{-14}}{4.3 \times 10^{-13}}=2.326 \times 10^{-2}
$$

We should use ICE table to find equilibrium concentrations of all species:

	A^{-}	HA	OH^{-}
Initial	0.047 M	0	0 M
Change	-x	+x	+x
Equilibrium	$0.047-\mathrm{x}$	x	x

$K_{b}=\frac{[H A]\left[O H^{-}\right]}{\left[A^{-}\right]}$
$2.326 \times 10^{-2}=\frac{(x)(x)}{(0.047-x)}$
Solve the quadratic equation:
$x^{2}=2.326 \times 10^{-2}(0.047-x)$
$x^{2}+2.326 \times 10^{-2}-1.093 \times 10^{-3}$
$D=\left(2.326 \times 10^{-2}\right)^{2}-4 \times\left(-1.093 \times 10^{-3}\right)=4.913 \times 10^{-3}$
$x_{1,2}=\frac{-2.326 \times 10^{-2} \pm \sqrt{4.913 \times 10^{-3}}}{2}$
$x_{1}=2.342 \times 10^{-2}, \quad x_{2}=-4.668 \times 10^{-2}$
As value of concentration is positive number, then $x=2.342 \times 10^{-2}$
$\left[\mathrm{OH}^{-}\right]=2.342 \times 10^{-2}$
As $\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}}$, then $\left[\mathrm{H}^{+}\right]=\mathrm{Kw} /\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} / 2.342 \times 10^{-2}=4.270 \times 10^{-13}$ $\mathrm{pH}=-\log \left(4.270 \times 10^{-13}\right)=12.37$

Answer: 12.37

Answer provided by www.AssignmentExpert.com

