A container of 1 L capacity is divided into two equal compartments by a thin partition, which is filled with 6 g H 2 and 16 g CH 4 respectively. The pressure in each compartment is recorded as P atm. The total pressure when partition is removed will be
A. P
B. $2 P$
C. $\mathrm{P} / 2$
D. $P / 4$

Solution.
The amount of hydrogen substance will be: $\mathrm{n}\left(\mathrm{H}_{2}\right)=\frac{m\left(\mathrm{H}_{2}\right)}{M\left(\mathrm{H}_{2}\right)}=\frac{6 \mathrm{~g}}{2 \mathrm{~g} / \mathrm{mol}}=3$ moles.
The amount of methane will be: $\mathrm{n}\left(\mathrm{CH}_{4}\right)=\frac{m\left(\mathrm{CH}_{4}\right)}{M\left(\mathrm{CH}_{4}\right)}=\frac{16 \mathrm{~g}}{16 \mathrm{~g} / \mathrm{mol}}=1 \mathrm{~mol}$.
The total number of moles of gas will be: $3+1=4$ moles.
The partial pressure of hydrogen will be: $\frac{3}{4} \mathrm{P}$.
The partial pressure of methane will be: $\frac{1}{4} \mathrm{P}$.
Total pressure according to Dalton's law: $\mathrm{P}=\frac{1}{4} P+\frac{3}{4} P=P$.
Answer: A.

