Dear expert, please provide an answer to the question below within 12 hours.
An acid has an acid dissociation constant of $2.8 \times 10-9$. What is the base dissociation constant of its conjugate base?

Answer:
$\mathrm{HA}=\mathrm{H}^{+}+\mathrm{A}$
$\mathrm{K}_{\mathrm{D}}=\left[\mathrm{H}^{+}\right] \times\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right] \times\left[\mathrm{A}^{-}\right]=\left[\mathrm{A}^{-}\right]^{2}$
$K_{D}=[A]^{2} /[\mathrm{HA}]$
$[A]^{2}=K_{D} \times[H A]$
$[A-]=\sqrt{K D x[H A]}=\sqrt{2.8 \times 10-9 \times 1}=5.29 \times 10^{-5} \mathrm{M}$
$\mathrm{pH}=-\lg \left[\mathrm{H}^{+}\right]=4.28$
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pOH}=14-\mathrm{pH}=14-4.28=9.72$
$[\mathrm{OH}]=$ ant $\lg \mathrm{pOH}=$ ant $\lg 9.72=1.905 \times 10^{-10}$

