A gas is compressed from an initial volume of 5.70 L to a final volume of 1.23 L by an external pressure of 1.00 atm. During the compression the gas releases 120 J of heat. What is the change in internal energy of the gas?

Solution:

According to the first law of thermodynamics, change in the internal energy of gas is equal to the **energy added as heat to the system plus the work done on the system by its surroundings**:

 $\Delta U = \Delta Q + \Delta W;$

We can substitute ΔW in the equation above by $p\Delta V,$ where p –pressure, ΔV – change of volume, so we get:

 $\Delta U = \Delta Q + p \Delta V;$

Substituting variables for numbers, we get:

ΔU= -120J + 1.00* 101325 Pa * ((5.7 – 1.23)*10⁻³ m³) = -120 J +101325 Pa * 0.00447 m³ = -120 J + 452.92 J = 332.92 J

(We converting pressure to Pascal's for matching units because $[Pa] = [N/m^2]$ and multiplying them by m³ we get $[N^*m]$, which is equal to Joules by definition. The Q value was taken with the minus sign, because heat is released by the system).

Answer:

Change in internal energy of the gas is +332.92 J.

Answer provided by www.AssignmentExpert.com