Given the stoichiometry of the reaction and the amount of MnO_4^- consumed in the reaction, how many moles of H_2O_2 were present in the old solution? Choose the closest answer a) 0.00651 mol b) 6.51 mol c) 0.0316 mol d) 0.126 mol

Solution:

2KMnO₄ + 5H₂O₂ + 3H₂SO₄ → K₂SO₄ + 2MnSO₄ + 8H₂O + 5O₂ For the second titration with the old H₂O₂ $n(MnO_{4^-}) = C \times V = 0.2 \text{ mol/L} \times 0.01268 \text{ L} = 2.54 \times 10^{-3} \text{ mol}$ Based on the ratio that 2 molecules of permanganate neutralise 5 molecules of H₂O₂, the number of moles of H₂O₂ (that were neutralized) is 5/2 × the number of moles of permangante n (MnO₄⁻) = 2 mol; n (H₂O₂) = 5 mol n (MnO₄⁻) = 2.54 × 10⁻³ mol, n (H₂O₂) = 6.35 × 10⁻³ mol **Answer**: a) 0.00651 mol

Answer provided by www.AssignmentExpert.com