How many moles of $\mathrm{C}_{2} \mathrm{H}_{2}$ are required to produce 0.58 moles $\mathrm{H}_{2} \mathrm{O}$?

Solution:

Balanced equation for task:
$2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2}=4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$;
According to stoichiometric coefficients, number of moles of water is equal to number of moles of acetylene: $n\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)=n\left(\mathrm{H}_{2} \mathrm{O}\right)$.

So, we need 0.58 moles of $\mathrm{C}_{2} \mathrm{H}_{2}$ to produce 0.58 moles of water.
Answer:
0.58 moles of $\mathrm{C}_{2} \mathrm{H}_{2}$ are needed to produce 0.58 moles of water.

