Answer on Question \#82576 - Chemistry | General Chemistry

The molecular mass of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ is $142 \mathrm{~g} / \mathrm{mol}$. How much $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ is needed to make 0.1 L of a 0.1 M solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$.

Solution

$\mathrm{M}\left(\mathrm{H}_{2} \mathrm{HPO}_{4}\right)=142 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}=0.1 \mathrm{M}$
$\mathrm{V}=0.1 \mathrm{~L}$
$\mathrm{m}-$?

$$
\begin{gathered}
\mathrm{n}=\mathrm{C} \times \mathrm{V} \\
\mathrm{~m}=\mathrm{n} \times \mathrm{M}=\mathrm{C} \times \mathrm{V} \times \mathrm{M}=0.1 \mathrm{M} \times 0.1 \mathrm{~L} \times 142 \mathrm{~g} / \mathrm{mol}=1.42 \mathrm{~g}
\end{gathered}
$$

Answer

Needed mass $\mathrm{Na}_{2} \mathrm{HPO}_{4} 1.42 \mathrm{~g}$.

