If you dissolve 10.0 g of sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, in a cup of water (250.0 g) what are the mass fractions of sugar and water?

Solution:

Mass fraction formula:
ω (sugar) $=\frac{m_{\text {sugar }}}{m_{\text {total }}}$;
As the total mass is a sum of sugar mass and water mass, we can transform equation:
ω (sugar) $=\frac{m_{\text {sugar }}}{m_{\text {total }}}=\frac{10 \mathrm{~g}}{250 \mathrm{~g}+10 \mathrm{~g}}=\frac{10 \mathrm{~g}}{260 \mathrm{~g}}=0.03846$;
Mass fraction of water could be determined either by formula or by subtracting ω (sugar) value from 1 (because we have two component system and sum of all mass fractions of system must be equal to 1):

$$
\begin{aligned}
& \omega(\text { water })=\frac{m_{\text {water }}}{m_{\text {total }}}=\frac{250 \mathrm{~g}}{250 \mathrm{~g}+10 \mathrm{~g}}=\frac{250 \mathrm{~g}}{260 \mathrm{~g}}=0.96154 ; \\
& \text { or } \\
& \omega(\text { water })=1-\omega(\text { sugar })=1-0.03846=0.96154 ;
\end{aligned}
$$

Answer:
Mass fraction of sugar in solution equals to 0.03846 ; mass fraction of water in solution equals to 0.96154 .

