Answer on Question \#82415 - Chemistry - General Chemistry

Question

Aluminum dissolves in an aqueous solution of NaOH according to the following reaction: $2 \mathrm{NaOH}+2 \mathrm{Al}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2}$ If 84.1 g of NaOH and 51.0 g of Al react, which is the limiting reagent? How much of the other reagent remains? What mass of hydrogen is produced?

Solution

To answer the question, molar masses of $\mathrm{NaOH}, \mathrm{Al}$ and H_{2} are required.
$M_{\mathrm{NaOH}} \approx 40 \frac{\mathrm{~g}}{\mathrm{~mol}}, M_{A l} \approx 27 \frac{\mathrm{~g}}{\mathrm{~mol}^{\prime}}, M_{\mathrm{H}_{2}} \approx 2 \frac{\mathrm{~g}}{\mathrm{~mol}}$.
Then it is possible to calculate the chemical amounts of NaOH and $A l: n=\frac{\mathrm{m}}{\mathrm{M}}$.

$$
n_{\mathrm{NaOH}}=\frac{m_{\mathrm{NaOH}}}{M_{\mathrm{NaOH}}}=\frac{84.1 \mathrm{~g}}{40 \frac{\mathrm{~g}}{\mathrm{~mol}}}=2.1025 \mathrm{~mol} ; \quad n_{A l}=\frac{m_{A l}}{M_{A l}}=\frac{51.0 \mathrm{~g}}{27 \frac{\mathrm{~g}}{\mathrm{~mol}}} \approx 1.8889 \mathrm{~mol} .
$$

From equation of the reaction it follows, that for every two moles of NaOH it should be two moles of $A l$. However, the chemical amount of $A l$ is less, than the chemical amount of NaOH . Therefore, $A l$ is the limiting reagent. After reaction it remains $n_{\mathrm{NaOH}(2)}=n_{\mathrm{NaOH}}-n_{A l}=$ $=2.1025 \mathrm{~mol}-1.8889 \mathrm{~mol}=0.2136 \mathrm{~mol}$ of NaOH . It weighs $m_{\mathrm{NaOH}}=M_{\mathrm{NaOH}} \times n_{\mathrm{NaOH}(2)}=$ $=40 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 0.2136 \mathrm{~mol}=8.544 \mathrm{~g}$.
For every two moles of $A l$, three moles of H_{2} are produced. Then, chemical amount of produced H_{2} equals $\frac{3}{2}$ of the chemical amount of $\mathrm{Al}: n_{H_{2}}=\frac{3}{2} \times n_{A l}=\frac{3}{2} \times 1.8889 \mathrm{~mol}=2.83335 \mathrm{~mol}$. $m_{H_{2}}=M_{H_{2}} \times n_{H_{2}}=2 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 2.8335 \mathrm{~mol}=5.6667 \mathrm{~g}$.

Answer: Al is the limiting reagent. After reaction it remains 0.2136 mol or 8.544 g of NaOH . 5.6667 g of H_{2} is produced.

Answer provided by www.AssignmentExpert.com

