Answer on Question \#82389, Chemistry / General Chemistry

Calculate pH of solution containing 0.15 M weak acid HA and 0.2 M sodium salt $\mathrm{NaA} \mathrm{pKa} \mathrm{HA}=$ 4.66

Solution

Solutions of weak acid and its sodium salt form buffer solution, where
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right] \times\left[A^{-}\right]}{[H A]}=\frac{\left[\mathrm{H}^{+}\right] \times[\mathrm{NaA}]}{[H A]} ;\left[\mathrm{H}^{+}\right],[\mathrm{HA}],[\mathrm{NaA}]-$ concentrations;
Find K_{a} :
$\mathrm{K}_{\mathrm{a}}=10^{-4.66}=2.19 \times 10^{-5}$
Find $\left[\mathrm{H}^{+}\right]$:
$\left[\mathrm{H}^{+}\right]=\frac{K_{a} \times[\mathrm{HA}]}{[\mathrm{NaA}]}=\frac{2.19 \times 10^{-5} \times 0.15}{0.2}=1.64 \times 10^{-5}(\mathrm{M})$

Find pH of solution:
$\mathrm{pH}=-\lg \left(1.64 \times 10^{-5}\right)=4.78$

Answer

$4.78-\mathrm{pH}$ of solution containing 0.15 M weak acid HA and 0.2 M sodium salt NaA .

