Question \# 82386

Starting with a pure sample of $\mathrm{A}(\mathrm{g})$. The following equilibrium is established:

$$
2 \mathrm{~A}(\mathrm{~g}) \text { <---> B (g) + C (g) }
$$

The total pressure is 8.63 atm and the temperature is $25.0 \circ \mathrm{C}$. The partial pressure of $\mathrm{A}(\mathrm{g})$ is 5.66 atm. Calculate the value of the standard free enthalpy change (in kJ) of this reaction at 25.0 degrees celsius.

Solution:

First of all, it is necessary to calculate the constant of equilibrium. The constant of equilibrium expressed in terms of partial pressures of components is:

$$
K_{p}=\frac{\chi_{B} * \chi_{C}}{\chi_{A}^{2}} * P^{\sum \vartheta_{i}}=K_{\chi} * P^{\sum \vartheta_{i}}
$$

As $\Sigma v=2-2=0, K_{p}=K_{x}$:

$$
K_{p}=K_{\chi}=\frac{\chi_{B} * \chi_{C}}{\chi_{A}^{2}}
$$

As $\chi_{B}=\chi_{C}$, the equilibrium constant is equal to:

$$
K_{\chi}=\frac{\chi_{B}^{2}}{\chi_{A}^{2}}
$$

To calculate K_{x}, it is necessary to calculate χ_{A} and χ_{B} :

$$
\begin{gathered}
\chi=\frac{p_{i}}{P} \\
\chi_{A}=\frac{5.66}{8.63}=0.656 \\
\chi_{B}=\frac{1-0.6559}{2}=0.172
\end{gathered}
$$

So, the equilibrium constant is equal to:

$$
K_{\chi}=\frac{0.172^{2}}{0.656^{2}}=0.06875
$$

The standard free enthalpy change of this reaction is:

$$
\Delta H^{0}=\Delta G^{0}=-R T \ln K_{p}=-8.314 * 298 * \ln 0.06875=6633.15 \mathrm{~J} \approx 6.63 \mathrm{~kJ}
$$

Answer:

The standard free enthalpy change of this reaction is 6.63 kJ .

