In the lab you mix 50.0 mL of $0.250 \mathrm{M} \mathrm{Ca}(\mathrm{NO} 3) 2$ with 50.0 mL of 0.500 M NaF in a coffee cup calorimeter to form a CaF2 precipitate. The initial temperature of each solution is 23 degrees celsius. Assuming that the final solution has a total mass of 100.0 g and a specific heat of $4.18 \mathrm{~J} / \mathrm{g}$ degrees celsius, calculate the final temperature you expect for the solution. Assume no heat is lost to the calorimeter.

Ca2+ (aq) $+2 \mathrm{~F}-(\mathrm{aq})$--> CaF2 (s)
$\Delta H^{\circ}=-115 \mathrm{~kJ} / \mathrm{mol}$

Solution:

First you need to determine which reactant is the limiting one. That is, which reactant will run out first. It will determine how much heat is given off.
moles Ca2+ = M Ca2+ x L Ca2+ $=(0.400)(0.0500)=0.0200$ moles $\mathrm{Ca} 2+$ moles F- $=$ M F-x L F- $=(0.800)(0.0500)=0.0400$ moles $F-$

The balanced equation tells us that it takes 2 moles of F - to react with 1 mole of $\mathrm{Ca} 2+$, and that's exactly what we have: 0.0400 moles $\mathrm{F}-/ 0.0200$ moles $\mathrm{Ca} 2+=2 / 1$. So both reactants will run out at the same time.

The equation also tells us that 1 mole of $\mathrm{Ca} 2+$ (or 2 moles of F -) will produce -11.5 kJ of heat. So how much heat will 0.0200 moles of $\mathrm{Ca} 2+$ produce?
0.0200 moles $\mathrm{Ca} 2+\mathrm{x}(-11.5 \mathrm{~kJ}$ heat $/ 1 \mathrm{~mole} \mathrm{Ca2}+)=0.230 \mathrm{~kJ}$ heat $=230 \mathrm{~J}$ heat

This amount of heat was absorbed by the water, causing the water temperature to increase.

Heat gained by water $=($ mass H 2 O$)($ specific heat H 2 O$)(\mathrm{Tf}-\mathrm{Ti})$
$230 \mathrm{~J}=(100 \mathrm{~g} \mathrm{H} 2 \mathrm{O})(4.18 \mathrm{~J} / \mathrm{g} \mathrm{C})(\mathrm{Tf}-23.0)$
$230=418 \mathrm{Tf}-9614$
$9844=418 \mathrm{Tf}$
$\mathrm{Tf}=23.55 \mathrm{C}$.
Answer:Tf=23.55 C.

