## Answer on Question \#82092, Chemistry / General Chemistry

1. A 20.00 mL aqueous solution of ethanol $(20.00 \% \mathrm{v} / \mathrm{v})$ has 12.00 g of 3 -methylbutanoic acid added to it. How much ethyl-3-methylbutanoate would theoretically be produced. Ethanol's density is $0.7893 \mathrm{~g} / \mathrm{ml}$.

## Solution:

Volume of ethanol on solution $=4 \mathrm{~mL}$ ( $20 \%$ from 20 mL ).
Mass of ethanol:
mass $=$ density $\times$ volume
$m=\rho \times V$
$\mathrm{m}($ ethanol $)=4 \mathrm{~mL} \times 0.7893 \mathrm{~g} / \mathrm{mL}=3.16 \mathrm{~g}$.
Reaction:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{COOH}=\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{n}=\frac{m}{M}$
$\mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=46 \mathrm{~g} / \mathrm{mol}$
$\mathrm{M}\left(\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{COOH}\right)=102 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}($ Ethanol $)=\frac{3.16 \mathrm{~g}}{46 \mathrm{~g} / \mathrm{mol}}=0.068 \mathrm{~mol}-$ limiting reactant
$\mathrm{n}(3-$ methylbutanoic acid $)=\frac{12 \mathrm{~g}}{102 \mathrm{~g} / \mathrm{mol}}=0,117 \mathrm{~mol}-$ excess
Calculate mass of ethyl-3-methylbutanoate:
$\mathrm{n}($ Ethanol $)=\mathrm{n}$ (ethyl-3-methylbutanoate) $=0.068 \mathrm{~mol}$
$\mathrm{M}\left(\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{COOC}_{2} \mathrm{H}_{5}\right)=130 \mathrm{~g} / \mathrm{mol}$
$\mathrm{m}=\mathrm{n} \times \mathrm{M}$
$\mathrm{m}=0.068 \mathrm{~mol} \times 130 \mathrm{~g} / \mathrm{mol}=8.84 \mathrm{~g}$.
Answer: theoretically can be produced 8.84 g . of ethyl-3-methylbutanoate.

