Question \# 82054

A stellar object is emitting radiation at 1420 nm . A detector is capturing 7107 photons per second at this wavelength. $\mathrm{h}=6.63 \times 10-34 \mathrm{~J}-\mathrm{s} . \mathrm{c}=2.998 \times 108 \mathrm{~m} / \mathrm{s}$.
(a) What is the total energy of the photons detected in one second?
(b) What is the total energy of the photons detected in one hour?

Answer:
(a) The total energy detected by a stellar object in one second is equal to:

$$
E_{S}=\frac{n * h * c}{\lambda}=\frac{7107 * 6.63 * 10^{-34} * 2.998 * 10^{8}}{1420 * 10^{-9}}=9.948 * 10^{-16} \mathrm{~J}
$$

(b) The total energy detected by a stellar object in one hour is equal to:

$$
E_{h}=E_{s} * 60 * 60=3.581 * 10^{-12} J
$$

