Question \#82052, Chemistry / General Chemistry | for completion

(a) How many milliliters of 0.155 M HCl are needed to neutralize completely 45.0 mL of 0.101 M $\mathrm{Ba}(\mathrm{OH}) 2$ solution?
(b) How many milliliters of 2.50 M H 2 SO 4 are needed to neutralize 50.0 g of NaOH ?
(c) If 54.8 mL of BaCl 2 solution is needed to precipitate all the sulfate in a 554 mg sample of Na2SO4 (forming BaSO4), what is the molarity of the solution?
(d) If 47.5 mL of 0.375 M HCl solution is needed to neutralize a solution of $\mathrm{Ca}(\mathrm{OH}) 2$, how many grams of $\mathrm{Ca}(\mathrm{OH}) 2$ must be in the solution?

Answer:
(a) How many milliliters of 0.155 M HCl are needed to neutralize completely 45.0 mL of 0.101 M $\mathrm{Ba}(\mathrm{OH}) 2$ solution?
$\mathrm{Ba}(\mathrm{OH})_{2}+\underline{\underline{2}} \mathrm{HCl} /($ разб. $)=\mathrm{BaCl}_{2}+\underline{2}_{2} \mathrm{O}$
$\mathrm{C}_{\mathrm{M}}=\mathrm{n} / \mathrm{V}, \quad \mathrm{n}=\mathrm{C}_{\mathrm{M}} \times V, \mathrm{~V}=\mathrm{n} / \mathrm{C}_{\mathrm{M}}$
$\mathrm{n}=0.101 \times 0.045=0,004545 \mathrm{~mol}\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)$
$0,004545 \times 2=0,00909 \mathrm{~mol}(\mathrm{HCl})$
$V=0.00909 / 0.155=0,0586 L=58.64 \mathrm{ml}$
(b) How many milliliters of 2.50 M H 2 SO 4 are needed to neutralize 50.0 g of NaOH ?
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{Na}_{2} \mathrm{SO} 4+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{\mathrm{M}}=\mathrm{n} / \mathrm{V}, \quad \mathrm{n}=\mathrm{C}_{\mathrm{M}} \times \mathrm{V}, \mathrm{V}=\mathrm{n} / \mathrm{C}_{\mathrm{M}}, \mathrm{n}=\mathrm{m} / \mathrm{Mr}$
$\mathrm{n}=\mathrm{m} / \mathrm{Mr}=50 / 40=1.25 \mathrm{~mol}(\mathrm{NaOH})$
$1.25 / 2=0.625 \mathrm{~mol}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
$\mathrm{V}=\mathrm{n} / \mathrm{C}_{\mathrm{M}}=0.625 / 2.5=0.25 \mathrm{~L}=250 \mathrm{ml}$
(c) If 54.8 mL of BaCl 2 solution is needed to precipitate all the sulfate in a 554 mg sample of Na 2 SO 4 (forming BaSO4), what is the molarity of the solution?
$\mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4->} \mathrm{BaSO}_{4}$ (осадок) +2 NaCl
$\mathrm{C}_{\mathrm{M}}=\mathrm{n} / \mathrm{V}, \quad \mathrm{n}=\mathrm{C}_{\mathrm{M}} \times \mathrm{V}, \mathrm{V}=\mathrm{n} / \mathrm{C}_{\mathrm{M}}, \mathrm{n}=\mathrm{m} / \mathrm{Mr}$
$\mathrm{n}=\mathrm{m} / \mathrm{Mr}=0.554 / 142=0.0039 \mathrm{~mol}\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$
$0.0039\left(\mathrm{BaCl}_{2}\right)$
$\mathrm{C}_{\mathrm{M}}=\mathrm{n} / \mathrm{V}=0.0039 / 0.0548=0.0712 \mathrm{M}$
(d) If 47.5 mL of 0.375 M HCl solution is needed to neutralize a solution of $\mathrm{Ca}(\mathrm{OH}) 2$, how many grams of $\mathrm{Ca}(\mathrm{OH}) 2$ must be in the solution?
$\mathbf{C a}(\mathbf{O H})_{2}+2 \mathbf{~ H C I}=\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{\mathrm{M}}=\mathrm{n} / \mathrm{V}, \mathrm{n}=\mathrm{C}_{\mathrm{M}} \times \mathrm{V}, \mathrm{V}=\mathrm{n} / \mathrm{C}_{\mathrm{M}}, \mathrm{n}=\mathrm{m} / \mathrm{Mr}$
$n=C_{M} \times V=0.375 \times 0.0475=0,0178125(\mathrm{HCl})$
$0,0178125 \times 2=0,035625 \mathrm{~mol}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$
$\mathrm{n}=\mathrm{m} / \mathrm{Mr}$, therefore $\mathrm{m}=\mathrm{n} \times \mathrm{Mr}=0.035625 \times 74=2,63625 \mathrm{gr}$.

