Answer on the question \#81998 - Chemistry - General Chemistry
At first, we ought to find ion concentration:
$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-9.5}=3.16 \times 10^{-10} \mathrm{~mol} / \mathrm{dm}^{-3}$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]=1 \times 10^{-14} \mathrm{~mol}^{2 /} \mathrm{dm}^{-6}$
$\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]=\mathrm{K}_{\mathrm{w} /}\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=1 \times 10^{-14} / 3.16 \times 10^{-10}=3.16 \times 10^{-5} \mathrm{~mol} / \mathrm{dm}^{-3}$
Now, let's solve:
$\mathrm{K}_{\mathrm{b}}=\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]^{2} /\left[\mathrm{B}_{(\mathrm{aq})}\right]=\left(3.16 \times 10^{-5}\right)^{2} / 0.50=2.00 \times 10^{-9} \mathrm{~mol} / \mathrm{dm}^{-3}$
$p K_{b}=-\log \left(2.00 \times 10^{-9}\right)=8.70$

Answer provided by www.AssignmentExpert.com

