A balloon with a volume of 5.58 L is at a pressure of 0.86 atm and a temperature of $12^{\circ} \mathrm{C}$. If the pressure is increased to 4.2 atm and the temperature is raised to $48^{\circ} \mathrm{C}$, what is the new volume of the balloon?
$\mathrm{V}_{1}=5.58 \mathrm{~L}=0.00558 \mathrm{~m}^{3}$
$\mathrm{T}_{1}=12^{\circ} \mathrm{C}=275 \mathrm{~K}$
$\mathrm{P}_{1}=0.86 \mathrm{~atm}=87139.5 \mathrm{~Pa}$
$\mathrm{T}_{2}=48^{\circ} \mathrm{C}=321 \mathrm{~K}$
$\mathrm{P}_{2}=4.2 \mathrm{~atm}=425565 \mathrm{~Pa}$
$\mathrm{V}_{2}-$?
$P_{1} V_{1}=n R T_{1}$
$P_{2} V_{2}=n R T_{2}$
$P_{1} V_{1} / P_{2} V_{2}=n R T_{1} / n R T_{2}$
$P_{1} V_{1} T_{2}=P_{2} V_{2} T_{1}$
$V_{2}=P_{1} V_{1} T_{2} / P_{2} T_{1}$
$V_{2}=\left(87139.5 \mathrm{~Pa} * 0.00558 \mathrm{~m}^{3} * 321 \mathrm{~K}\right) /\left(425565 \mathrm{~Pa}^{*} 275 \mathrm{~K}\right)=0.00133 \mathrm{~m}^{3}$

