Answer on Question \#81928, Chemistry / General Chemistry

At 25 degrees celsius, for the $2 \mathrm{~A}(\mathrm{aq})$----> $\mathrm{B}(\mathrm{aq})+\mathrm{C}(\mathrm{aq})$ reaction, the equilibrium constant is 1.62. If the concentration of $B(a q)$ was 0.373 M and the concentration of $C(a q)$ was 0.509 M , what would be the minimum concentration of $A(a q)$ necessary in order (in mol / L) to make this reaction spontaneous under these conditions?

Solution

Expression for reaction quotient Q for reaction $2 \mathrm{~A}(\mathrm{aq})$----> $\mathrm{B}(\mathrm{aq})+\mathrm{C}(\mathrm{aq})$ is:

$$
Q=\frac{[B][C]}{[A]^{2}}
$$

The reaction is spontaneous when $Q<K_{c}$, i.e.:

$$
\begin{gathered}
\frac{[B][C]}{[A]^{2}}<K_{c} \\
\frac{0.373 \times 0.509}{c_{A}^{2}}<1.62 \\
0.117<c_{A}^{2} \\
0.342<c_{A}
\end{gathered}
$$

So, the reaction is spontaneous when $c_{A}>0.342 \mathrm{M}$. So, the minimum concentration of A is 0.343M.

Answer: 0.343 M

Answer provided by www.AssignmentExpert.com

