Answer on Question \#81852, Chemistry / General Chemistry

A solution is made by dissolving 13.9 g of iron(III) acetate, $\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}$, in enough water to make exactly 250.0 ml of solution. Calculate the molarity of each species:
$\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}(\mathrm{~mol} / \mathrm{I})$;
Fe^{3+} ($\mathrm{mol} / \mathrm{l}$);
$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{mol} / \mathrm{l})$.

Solution

Find the amount of iron(III) acetate:
$v=\frac{13.9}{233}=0.06(\mathrm{~mol})$
If there is 0.06 mol in 250 ml , so there is 0.24 mol in 1 L .
1 mole of $\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}$ contains 1 mole of Fe^{3+} and 3 moles of $\mathrm{CH}_{3} \mathrm{COO}^{-}$

Answer

$\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}(\mathrm{~mol} / \mathrm{I}): \mathbf{0 . 2 4}$;
$\mathrm{Fe}^{3+}(\mathrm{mol} / \mathrm{l}): \mathbf{0 . 2 4 ;}$
$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{mol} / \mathrm{l}): \mathbf{0 . 7 2}$.

