A cook is baking a small cake. It needs 500 cm³ (at STP) of CO₂ to make the cake rise. The cook decides to add baking powder which contains sodium bicarbonate. This generates CO₂ by thermal decomposition. 2NaHCO₃--->CO₂+Na₂CO₃+H₂O. What mass of baking powder must be added to the cake mixture?

Solution: Let's find amount of moles for this volume of CO₂: n (CO₂) = $\frac{V(CO_2)}{V_m} = \frac{0.5 L}{22.71 L/mol} = 0.022$ mol (Where V_m – molar volume, V – volume of gas in liters). (Note: Molar volume – volume of 1 mole of any gas at STP.)

Since coefficients ratio in equation for NaHCO₃ and CO₂ is 2:1, we are making a conclusion, that amount of moles of NaHCO₃ in reaction is twice times bigger than amount of moles of CO₂. Then, n (NaHCO₃) = 2 n (CO₂) = 0.022*2 = 0.044 mol.

Now we know number of moles for NaHCO₃ and we can calculate its mass: m(NaHCO₃)= n (NaHCO₃) * M(NaHCO₃) = 0.044 mol * (23+1+12+16*3) g/mol = 0.044 mol * 84 g/mol = 3.696 g.

(Where M – molar mass in grams per mole).

Answer:

The amount of baking powder that must be added to the cake mixture is 3.696 grams, which approximately equal to 3.7 g.

Answer provided by www.AssignmentExpert.com