How many grams of $CaCO_3$ are needed to produce 1 mole of CO_2 via the reaction below?

 $CaCO_{3}(s) \longrightarrow CaO(s) + CO_{2}(g)$

Solution:

Coefficients in equation for CaCO₃ and CO₂ are equal to 1. Then, each mole of CaCO₃ produces 1 mole of CO₂ and amount of moles of CaCO₃ is equal to amount of moles of CO₂. According to this, we need to find a mass of 1 mole of CaCO₃ to solve this task: m(CaCO₃)= M(CaCO₃)*n(CaCO₃)=(40+12+16*3) g/mol *1 mol=100 g

(Where m is mass of CaCO₃ in grams; M – molar mass of CaCO₃ in grams per mole; n – number of moles of CaCO₃).

Answer: To obtain 1 mole of CO_2 , we need to use 100 grams of $CaCO_3$.

Answer provided by AssignmentExpert.com