## Answer on Question \#80337, Chemistry/ Organic Chemistry

## Liquid hexane

will react with gaseous oxygen
to produce gaseous carbon dioxide
and gaseous water
. Suppose 13.8 g of hexane is mixed with 74 . g of oxygen. Calculate the minimum mass of hexane that could be left over by the chemical reaction. Round your answer to significant digits.

## Solution

$$
2 \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{I})+19 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+14 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

1. Find amount of substance of hexane:
$\mathrm{n}=\mathrm{m} / \mathrm{M}$
$\mathrm{M}\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)=86 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)=13.8 \mathrm{~g} / 86 \mathrm{~g} / \mathrm{mol}=0.160 \mathrm{~mol}$
2. Find amount of substance of oxygen
$\mathrm{n}=\mathrm{m} / \mathrm{M}$
$\mathrm{M}\left(\mathrm{O}_{2}\right)=32 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}\left(\mathrm{O}_{2}\right)=74 . \mathrm{g} / 32 \mathrm{~g} / \mathrm{mol}=2.31 \mathrm{~mol}$
3. Find limiting reactant.

According to equation mole ratio of reactants is:
$\mathrm{n}\left(\mathrm{C}_{6} \mathrm{H}_{14}\right): \mathrm{n}\left(\mathrm{O}_{2}\right)=2: 19$.
If we have 0.160 mol of hexane then amount of substance of oxygen should be: $\mathrm{n}\left(\mathrm{O}_{2}\right)=0.160 \times 19 / 2=1.52 \mathrm{~mol}$. And we have $\mathrm{n}\left(\mathrm{O}_{2}\right)=2.31 \mathrm{~mol}$. We have excess of oxygen. Limiting reactant is hexane. This means, that all hexane $(13.8 \mathrm{~g})$ will be consumed in this reaction. No hexane could be left over.

Answer: all hexane ( 13.8 g ) will be consumed in this reaction, no hexane could be left over.

