79541
$\mathrm{N}_{2} \mathrm{O}_{4} \leftrightarrow 2 \mathrm{NO}_{2}$
$\mathrm{K}=\left[\mathrm{NO}_{2}\right]^{2} /\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
Let
$\mathrm{P}\left[\mathrm{NO}_{2}\right]=x$
$P\left[N_{2} \mathrm{O}_{4}\right]=y$
Then
$x+y=101300$ Pa
Because $\mathrm{N}_{2} \mathrm{O}_{4}$ is 50% dissociated, it's initial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ was 2 y , and $\mathrm{x}=2$ * $(2 \mathrm{y}-\mathrm{y})=2 \mathrm{y}$
$\left\{\begin{array}{c}x+y=101300 \\ x=2 y\end{array}\right.$
$\{3 y=101300$
$\left\{\begin{array}{l}x=2 y\end{array}\right.$
$\{y=33767$
$\left\{\begin{array}{l}x=67533\end{array}\right.$
Consequently,
$\mathrm{K}=67533^{2} / 33767=135064 \mathrm{~Pa}$

Answer provided by AssignmentExpert.com

