Answer on Question \#79510, Chemistry/ General Chemistry

Calculate the percent ionization of HA in a 0.10 M solution.

Solution

To answer this question we should know not only concentration of HA in a solution but also Ka of the acid. As this value is not given we can take any value of Ka and show calculations.

For example Ka for HA is 6.7×10^{-7}
$\%$ ion $=\frac{\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}}{[\mathrm{HA}]_{\text {initial }}} \times 100 \%$
Where $[\mathrm{HA}]_{\text {initial }}$ - is the initial concentration of HA
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is equilibrium concentration of H^{+}.
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
We should use ICE table to find equilibrium concentrations of all species:

	HA	$\mathrm{H}_{3} \mathrm{O}^{+}$	A^{-}
Initial	0.10 M	0	0
Change	$-x$	$+x$	$+x$
Equilibrium	$0.10-x$	x	x

$K_{a}=\frac{\left[H_{3} O^{+}\right]\left[A^{-}\right]}{[H A]}$
$K_{a}=\frac{x^{2}}{(0.10-x)}$
As Ka is very small, we make an assumption that x is very small. Then
$0.10-\mathrm{x} \cong 0.10$
$K_{a}=\frac{x^{2}}{0.10}$
$6.7 \times 10^{-7}=\frac{x^{2}}{0.10}$
$x=2.59 \times 10^{-4}$
Select the smallest concentration for the 5% rule.
$\frac{2.59 \times 10^{-4}}{0.10} \times 100 \%=0.259 \%$
This value is much less than 5%, so the assumptions are valid.

Find \% ion :
$\%$ ion $=\frac{2.59 \times 10^{-4}}{0.1} \times 100 \%=0.259 \%$
Answer: 0.259 \%

