Answer on Question #79510, Chemistry/ General Chemistry

Calculate the percent ionization of HA in a 0.10 M solution.

Solution

To answer this question we should know not only concentration of HA in a solution but also Ka of the acid. As this value is not given we can take any value of Ka and show calculations.

For example Ka for HA is 6.7×10^{-7}

%
$$ion = \frac{[H_3 O]^+}{[HA]_{initial}} \times 100\%$$

Where [HA]_{initial} – is the initial concentration of HA

 $[H_3O^+]$ is equilibrium concentration of H^+ .

 $HA + H_2O \leftrightarrow H_3O^+ + A^-$

We should use ICE table to find equilibrium concentrations of all species:

	НА	H_3O^+	A
Initial	0.10 M	0	0
Change	-X	+χ	+χ
Equilibrium	0.10 – x	х	Х

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$
$$K_{a} = \frac{x^{2}}{(0.10 - x)}$$

As Ka is very small, we make an assumption that x is very small. Then

$$0.10 - x \approx 0.10$$
$$K_a = \frac{x^2}{0.10}$$
$$6.7 \times 10^{-7} = \frac{x^2}{0.10}$$
$$x = 2.59 \times 10^{-4}$$

Select the smallest concentration for the 5% rule.

$$\frac{2.59 \times 10^{-4}}{0.10} \times 100\% = 0.259\%$$

This value is much less than 5%, so the assumptions are valid.

Find % ion :

% *ion* = $\frac{2.59 \times 10^{-4}}{0.1} \times 100\% = 0.259\%$

Answer: 0.259 %