The rate of a standard reaction is $0.01840 \mathrm{M} / \mathrm{s}$ at 25 oC . It is determined that this is too fast, and that the rate should be reduced to $0.0046 \mathrm{M} / \mathrm{s}$. What temperature should the reaction be run at to achieve this?
A. 45 oC
B. 20 oC
C. 15 oC
D. 5 oC
E. 0 oC

Answer:

The right answer is $\mathrm{D} .5^{\circ} \mathrm{C}$.
According to the equation [1]:

$$
\frac{R_{2}}{R_{1}}=Q_{10}{ }^{\frac{T_{2}-T_{1}}{10}}
$$

where R_{1} - is the rate of reaction at $25^{\circ} \mathrm{C}, \mathrm{R}_{2}$ - is the rate of reduced reaction, T_{1} - is the temperature of standard reaction $\left(T_{1}=25+273=298 \mathrm{~K}\right), T_{2}-$ is the temperature of reduced reaction ($\ln \mathrm{K}$), Q_{10} - is the Q_{10} temperature coefficient.

For most biological systems, the Q_{10} value is ~ 2 to 3 .

$$
\begin{gathered}
\frac{0.0046}{0.0184}=Q_{10} \frac{T_{2}-298}{10} \\
0.25=Q_{10} \frac{T_{2}-298}{10}
\end{gathered}
$$

If we suggest that Q_{10} is equal to 2 , we get the following:

$$
0.25=2^{\frac{T_{2}-298}{10}}
$$

T_{2} should be equal to 278 , to be the solution of the equation.
$t_{2}=278-273=5^{\circ} \mathrm{C}$.
So, the right answer is D. $5^{\circ} \mathrm{C}$.
Reference:
[1] https://en.wikipedia.org/wiki/Q10 (temperature coefficient)

