Answer on Question \#79400 - Chemistry - General Chemistry

Part A: $\mathrm{K}_{\mathrm{p}}=2.7 \times 10^{-4}$
At $25^{\circ} \mathrm{C}$ the reaction from Part A has a composition as shown in the table below.
Substance Pressure (atm):
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) 4.35$
$\mathrm{H}_{2}(\mathrm{~g}) 3.75$
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) 1.25 \times 10^{-2}$
What is the free energy change, $\Delta \mathrm{G}$, in kilojoules for the reaction under these conditions?

Solution:

$2 \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{K}_{\mathrm{p}}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]_{p}}{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}=\frac{1.25 \times 10^{-2}}{(3.75)^{2} 4.35}=2.04 \times 10^{-4}$
$\Delta \mathrm{G}=-\mathrm{RT}\left(\operatorname{In} \mathrm{K}_{\mathrm{p}}\right)=-(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}) \times(298 \mathrm{~K}) \times \ln \left(2.04 \times 10^{-4}\right)$
$\Delta G=21048 \mathrm{~J} / \mathrm{mol}=21.05 \mathrm{~kJ} / \mathrm{mol}$

