Answer on Question \#79395 Chemistry/ General Chemistry

Calculate the concentrations of all species present ($\mathrm{H} 3 \mathrm{O}+, \mathrm{F}-, \mathrm{HF}, \mathrm{Cl}-$, and $\mathrm{OH}-$) in a solution that contains $0.17 \mathrm{M} \mathrm{HF}(\mathrm{Ka}=3.5 \times 10-4)$ and 0.17 M HCl .
My answers are: $0.17,0.17,0.17,0.17,5.89 * 10^{\wedge}-14$ but it says the're wrong but i dont understand how.

Solution

HCl is a strong acid. It dissociates completely:
$\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
As mole ratio of $n(\mathrm{HCl}): n\left(\mathrm{H}^{+}\right): n\left(\mathrm{Cl}^{-}\right)=1: 1: 1$ then initial concentrations of Cl^{-}and H^{+}are $c\left(\mathrm{Cl}^{-}\right)=0.17 \mathrm{M}, \mathrm{c}\left(\mathrm{H}^{+}\right)=0.17 \mathrm{M}$

HF is a weak acid. It does not dissociate completely:
$\mathrm{HF} \leftrightarrow \mathrm{H}^{+}+\mathrm{F}$
We should use ICE table to find equilibrium concentrations of all species:

	HF	H^{+}	F^{-}
Initial	0.17 M	0	0
Add	0	0.17 M	0
Change	-x	+x	+x
Equilibrium	$0.17-\mathrm{x}$	$0.17+\mathrm{x}$	x

$K_{a}=\frac{(0.17+x) x}{(0.17-x)}$
We make an assumption that x is very small (we'll check this assumption in the end of calculations- 5% rule), then
$0.17+x \cong 0.17$
$0.17-x \cong 0.17$
$K_{a}=\frac{0.17 x}{0.17}$
$K_{a}=x$
$x=3.5 \times 10^{-4}$
Select the smallest concentration for the 5% rule.
$\frac{3.5 \times 10^{-4}}{0.17} \times 100 \%=0.2 \%$
This value is much less than 5%, so the assumptions are valid.

The concentrations at equilibrium are:
$[H F]=0.17-x=0.17-3.5 \times 10^{-4}=0.1697 \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=0.17+\mathrm{x}=0.17+3.5 \times 10^{-4}=0.1704 \mathrm{M}$
$[\mathrm{F}]=\mathrm{x}=3.5 \times 10^{-4} \mathrm{M}$
As Cl^{-}do not take part at any reaction its equilibrium concentration is the same as its initial concentration:
$\left[\mathrm{Cl}^{-}\right]=0.17 \mathrm{M}$
Find equilibrium concentration of OH^{-}:
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log (0.1704)$
$\mathrm{pH}=0.7687$
$\mathrm{pOH}=14-\mathrm{pH}$
$\mathrm{pOH}=14-0.7687$
$\mathrm{pOH}=13.23$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$13.23=-\log \left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{OH}^{-}\right]=10^{-13.23}$
$\left[\mathrm{OH}^{-}\right]=5.87 \times 10^{-14} \mathrm{M}$

Answer:

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$[\mathrm{F}]$	$[\mathrm{HF}]$	$\left[\mathrm{Cl}^{-}\right]$	$\left[\mathrm{OH}^{-}\right]$
0.1704 M	$3.5 \times 10^{-4} \mathrm{M}$	0.1697 M	0.17	$5.87 \times 10^{-14} \mathrm{M}$

