$\mathrm{V}=8.50 \mathrm{~L}=8500 \mathrm{ml}$
$\mathrm{m}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)=\mathrm{d} * \mathrm{~V}=0.758 \mathrm{~g} / \mathrm{ml} * 8500 \mathrm{ml}=6443 \mathrm{~g}$
$6443 \mathrm{~g} \quad \mathrm{n}$ moles $\mathrm{xg} \quad \mathrm{z} \mathrm{g}$
$2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2}=16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$
$2 * 114$ g 25 moles $16 * 44 \quad 18 * 18$
$\mathrm{M}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)=114, \mathrm{M}\left(\mathrm{CO}_{2}\right)=44, \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=18$.
$\mathrm{n}=(6443 * 25) /(2 * 114)=706.47$ moles - amount of O_{2} needed for the complete combustion of gasoline in one day.
$\mathrm{z}=(6443 * 18 * 18) /(2 * 114)=9155.84 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$ formed per day
$x=(6443 * 16 * 44) /(2 * 114)=19894.2 \mathrm{~g}$ of CO_{2} formed per day
$19894.2 * 2=39788.4 \mathrm{~g}$ of CO_{2} formed in two days.

