Question \#78733

Sodium rhodizonate is often used in forensic investigations to detect the presence of any residue from shooting a firearm. Burned and unburned particles from the gunpowder will be ejected with the projectile. In the photograph below, the residue from the gunshot is stained red by sodium rhodizonate at a pH of 2.8 . How many mL of 0.65 M hydrochloric acid need to be added to a neutral solution of sodium rhodizinate to make 500.0 mL of solution with a pH of 2.800 ?

Answer:
The precise formula for calculating the pH and pOH is

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
{\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}} \\
{\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}}
\end{gathered}
$$

Therefore:

```
\(\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}\)
\(\left[\mathrm{H}^{+}\right]=10^{-2.8}=0.001584\)
```


And

$\mathrm{V}=500 \mathrm{ml}=0.5 \mathrm{I}$
$\mathrm{C}_{\mathrm{m}}=\mathrm{n} / \mathrm{V} \quad \mathrm{n}=\mathrm{C}_{\mathrm{M}} \times \mathrm{V} \quad \mathrm{n}=0.001584 \times 0.5=0.0008 \mathrm{moll}$
$V=n / C_{M}=0.0008 / 0.65=0.00123$ I
$\mathrm{V}=0.00123 \mathrm{I}=1.23 \mathrm{ml}$.
Answer provided by AssignmentExpert.com

