Air is about $78 \% \mathrm{~N}_{2}, 21 \% \mathrm{O}_{2}$, and 0.90% Ar. What is the mole fraction of each gas?
Solution:
Let $V_{\text {mixture }}=1 L$.
$V\left(N_{2}\right)=0.78 \times 1 L=0.78 L ;$
$V\left(O_{2}\right)=0.21 \times 1 L=0.21 L ;$
$V(A r)=0.009 \times 1 L=0.009 L ;$
$n\left(N_{2}\right)=\frac{0.78 \mathrm{~L}}{22.4 \mathrm{~mole} / \mathrm{L}}=0.03482 \mathrm{moles} ;$
$n\left(\mathrm{O}_{2}\right)=\frac{0.21 \mathrm{~L}}{22.4 \mathrm{~mole} / \mathrm{L}}=0.009375 \mathrm{moles} ;$
$n($ Ar $)=\frac{0.009 \mathrm{~L}}{22.4 \mathrm{~mole} / \mathrm{L}}=0.0004018 \mathrm{moles} ;$
$x\left(N_{2}\right)=\frac{0.03482}{0.03482+0.009375+0.0004018}=0.7807 ;$
$x\left(N_{2}\right)=\frac{0.009375}{0.03482+0.009375+0.0004018}=0.2102 ;$
$x(A r)=\frac{0.0004018}{0.03482+0.009375+0.0004018}=0.009009$.
Answer: All numbers are rounded to the nearest 100 and 1000: $x\left(N_{2}\right)=0.78, x\left(O_{2}\right)=0.21$, $x(A r)=0.009$.

