Answer on Question #78413 - Chemistry - General Chemistry

Task:

What is the ΔH° of the equation: $4NH_3$ (g) + $5O_2$ (g) $\rightarrow 4NO$ (g) + $6H_2O$ (g)?

Given: ΔH_f° (NH₃) = -45.9 kJ/mol, ΔH_f° (NO) = 90.3 kJ/mol, ΔH_f° (H₂O) = -242 kJ/mol.

A. $\Delta H^{\circ} = 90.7 \text{ kJ}$;

B. $\Delta H^{\circ} = -90.7 \text{ kJ}$;

C. $\Delta H^{\circ} = 907 \text{ kJ}$;

D. $\Delta H^{\circ} = -907 \text{ kJ}$;

E. None of the Above.

Solution:

Hess' Law:

"The enthalpy of a given chemical reaction is constant, regardless of the reaction happening in one step or many steps."

Let's use Hess' Law that can be presented like this:

$$\Delta H_r^o = \sum \Delta H_f^o(products) - \sum \Delta H_f^o(reac \tan ts)$$

Products: H_2O , NO. ΔH_f° (H_2O) = -242 kJ/mol; ΔH_f° (NO) = 90.3 kJ/mol.

Reactants: NH₃, O₂. Δ H_f° (NH₃) = -45.9 kJ/mol, Δ H_f° (O₂) = 0 kJ/mol.

Then,

$$\begin{split} \Delta H_{r}^{o} &= 6*\Delta H_{f}^{o}(H_{2}O) + 4*\Delta H_{f}^{o}(NO) - 4*\Delta H_{f}^{o}(NH_{3}) - 5*\Delta H_{f}^{o}(O_{2});\\ \Delta H_{r}^{o} &= 6*(-242\,kJ\,/\,mol) + 4*90.3\,kJ\,/\,mol - 4*(-45.9\,kJ\,/\,mol) - 5*0\,kJ\,/\,mol;\\ \Delta H_{r}^{o} &= -1452\,kJ\,/\,mol + 361.2\,kJ\,/\,mol - (-183.6\,kJ\,/\,mol) = -907.2\,kJ\,/\,mol;\\ \Delta H_{r}^{o} &= -907.2\,kJ\,/\,mol. \end{split}$$

Answer: D. $\Delta H^{\circ} = -907 \text{ kJ}$. The ΔH° of the equation is -907.2 kJ/mol.

Answer provided by AssignmentExpert.com