Answer on Question \#78389, Chemistry / General Chemistry

Question:

The density at $20^{\circ} \mathrm{C}$ of a 0.669 M solution of acetic acid in water is $1.0041 \mathrm{~g} / \mathrm{mL}$. The molar mass of acetic acid, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, is $60.05 \mathrm{~g} / \mathrm{mol}$.

What is the mol fraction of the solution?

What is the mass \% of the solution?

What is the molality of the solution?

Solution:

All calculations below are for 1 L of solution!
Mass of solution: $1.0041 \cdot 1000=1004.1 \mathrm{~g}$

Amount of acetic acid: 0.669 mol

Mass of acetic acid: $60.05 \cdot 0.669=40.17345 \mathrm{~g}$
Mass of water: $1004.1-40.17345=963.92655 \mathrm{~g} \quad(=0.96392655 \mathrm{~kg})$

Amount of water: 963.92655 / $18.02=53.492 \mathrm{~mol}$

So:

Molar fraction: $0.669 /(0.669+53.492)=\mathbf{0 . 0 1 2 3 5} \boldsymbol{= 1 . 2 3 5} \mathbf{~ m o l} \%$
Mass fraction: 40.17345 / 1004.1 = 0.04 = $\mathbf{4} \mathbf{w t \%}$
Molality: 0.669 / $0.96392655=\mathbf{0 . 6 9 4} \mathbf{~ m o l} / \mathbf{k g}$

Answer:

Molar fraction: $0.01235=1.235 \mathrm{~mol} \%$

Mass fraction: $0.04=4 w t \%$

Molality: $0.694 \mathrm{~mol} / \mathrm{kg}$

