According to Raoult's law $n$ equation form, for a mixture of liquids $A$ and B, this reads:
$\mathrm{p}_{\mathrm{A}}=\mathrm{x}_{\mathbf{A}} \times \mathrm{P}_{\mathbf{A}}^{0}$
$\mathrm{p}_{\mathrm{B}}=\mathrm{x}_{\mathrm{B}} \times \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}$

In this equation, $\mathrm{P}_{\mathrm{A}}$ and $\mathrm{P}_{\mathrm{B}}$ are the partial vapour pressures of the components A and B .

And

The total vapour pressure of the mixture is equal to the sum of the individual partial pressures.

Total vapour pressure $=p_{A}+p_{B=P}$

Also $\mathrm{x}_{\mathrm{A}}$ and $\mathrm{x}_{\mathrm{B}}$ are the mole fractions of A and B . That is exactly what it says it is - the fraction of the total number of moles present which is A or B.

You calculate mole fraction using, for example:
$x_{A}=\frac{\text { moles of } A}{\text { total number of moles }}=$
From this
$\mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}}=1$
$\mathrm{P}=\mathrm{P}_{\mathrm{A}} *_{\mathrm{x}}^{\mathrm{A}}+\mathrm{P}_{\mathrm{B}} *_{\mathrm{B}}=\mathrm{P}_{\mathrm{A}}{ }^{*} \mathrm{x}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{B}} * \mathrm{x}_{\mathrm{A}}$
$\mathrm{x}_{\mathrm{A}}=\left(\mathrm{P}-\mathrm{P}_{\mathrm{B}}\right) / \mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}=(286-395)} /(96-395)=0.3645=\mathrm{n}_{\mathrm{A}} /\left(\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}\right) ;$ n-number of moles
$\mathrm{n}_{\mathrm{A}}=\left(\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}\right) * 0.3645$

From the condition, we know that mixture we have equal masses C6H6(we call it a component B ) and compound X (we call it a component A). It follows that $\mathrm{M}_{\mathrm{A}} * \mathrm{n}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}} * \mathrm{n}_{\mathrm{B}}=>\mathrm{n}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}} * \mathrm{n}_{\mathrm{B}} / \mathrm{M}_{\mathrm{A}}$. Combining these two equations, we obtain $M_{B} * n_{B} / M_{A}=\left(M_{B} * n_{B}+M_{A} * n_{B}\right) / M_{A} * 0.3645$
$=>\mathrm{M}_{\mathrm{B}} * \mathrm{n}_{\mathrm{B}}=\mathrm{M}_{\mathrm{B}} * \mathrm{n}_{\mathrm{B}} * 0.3645+\mathrm{M}_{\mathrm{A}} * \mathrm{n}_{\mathrm{B}} * 0.3645$
$=>\mathrm{M}_{\mathrm{B}}=\mathrm{M}_{\mathrm{B}} * 0.3645+\mathrm{M}_{\mathrm{A}} * 0.3645$
$=>\mathrm{M}_{\mathrm{A}}=\left(\mathrm{M}_{\mathrm{B}}-\mathrm{M}_{\mathrm{B}} * 0.3645\right) / 0.3645=((6 * 12+6)-(6 * 12+6) * 0.3645) / 0.3645=1$ 36

Answer provided by AssignmentExpert.com

