Answer on Question \#78320, Chemistry/ General Chemistry

Calculate the volume of carbon dioxide produced at 0 degrees Celsius and 100.0KPa when 2.5 g sodium carbonate reacts with excess hydrochloric acid.

Solution

$\mathrm{Na} 2 \mathrm{CO} 3+2 \mathrm{HCl}=2 \mathrm{NaCl}+\mathrm{H} 2 \mathrm{O}+\mathrm{CO} 2$
Find amount of substance of sodium carbonate:
$n=m / M$
$\mathrm{Mr}(\mathrm{Na} 2 \mathrm{CO} 3)=\operatorname{Ar}(\mathrm{Na}) \times 2+\operatorname{Ar}(\mathrm{C})+\operatorname{Ar}(\mathrm{O}) \times 3=23 \times 2+12+16 \times 3=106$
$\mathrm{Mr}=\mathrm{M}$
$\mathrm{M}(\mathrm{Na} 2 \mathrm{CO} 3)=106 \mathrm{~g} / \mathrm{mol}$
$n(\mathrm{Na} 2 \mathrm{CO} 3)=2.5 / 106=0.024(\mathrm{~mol})$
According to equation 1 mole of Na 2 CO 3 gives 1 mole of CO 2
We have 0.024 mol of Na 2 CO 3 that give x mol of CO 2
$1 / 0.024=1 / x$
$x=0.024$
$\mathrm{n}(\mathrm{CO} 2)=0.024 \mathrm{~mol}$
According to Mendeleev-Clapeyron equation:
PV=nRT
Then $V=n R T / P$
$\mathrm{n}=0.024 \mathrm{~mol}$
$\mathrm{R}=8.314 \mathrm{~m}^{\wedge} 3 \mathrm{~Pa} / \mathrm{Kmol}$
$\mathrm{T}=0+273.15=273.15 \mathrm{~K}$
$P=100.0 \mathrm{KPa}=100000 \mathrm{~Pa}$
$V=0.024 \times 8.314 \times 273.15 / 100000=0.000545 \mathrm{~m}^{\wedge} 3=0.545 \mathrm{dm}^{\wedge} 3=545 \mathrm{~cm}^{\wedge} 3$
Answer:545 cm^3

