Question:

A liquid has a specific heat of $2.81 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, a mass of 90.0 g , and an initial temperature of $25.0^{\circ} \mathrm{C}$. What is the new temperature of the liquid if $2,350 \mathrm{~J}$ of energy are removed from it?
A. $1.57^{\circ} \mathrm{C}$
B. $9.30^{\circ} \mathrm{C}$
C. $15.7^{\circ} \mathrm{C}$
D. $34.3^{\circ} \mathrm{C}$
E. None of the Above

Solution:

The heat removed from the liquid: $\mathrm{Q}=\mathrm{cm} \Delta \mathrm{T}$
Where $\Delta \mathrm{T}=\mathrm{T}_{0}-\mathrm{T}$
T_{o} - initial temperature
T - final temperature
$\Delta \mathrm{T}=\frac{\mathrm{Q}}{\mathrm{cm}}=\frac{2,350 \mathrm{~J}}{2.81 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}} \times 90.0 \mathrm{~g}}=9.29^{\circ} \mathrm{C}$
$\mathrm{T}=\mathrm{T}_{0}-\Delta \mathrm{T}=25.0^{\circ} \mathrm{C}-9.29^{\circ} \mathrm{C}=15.7^{\circ} \mathrm{C}$

Answer:

C. $15.7^{\circ} \mathrm{C}$

