How many Joules of heat are required to raise the temperature of an 8.0 kg Copper bar by 130°C? (c-Copper = $0.3851 J/(g \times {}^{\circ}\text{C})$

A.
$$4.01 \times 10^2$$
 J

B.
$$4.01 \times 10^3 \, \text{J}$$

C.
$$4.01 \times 10^4 \, \text{J}$$

D.
$$4.01 \times 10^5 \text{ J}$$

E.
$$4.01 \times 10^6 \, \text{J}$$

Solution:

$$Q=cm\Delta T$$
, where Q – heat added, J;
$$c- {\rm specific\ heat}, J/(g\times {\rm ^{\circ}C})\;;$$

$$\Delta T- {\rm change\ in\ temperature}, {\rm ^{\circ}C};$$

$$m- {\rm mass}, {\rm g}.$$

$$Q=0.3851\times 8000\times 130=4.01\times 10^5 J.$$

Answer: D. 4.01×10^5 J.